import joblib import pandas as pd # Load the model mileage_model = joblib.load('mileage_predictor.pkl') price_model = joblib.load('price_predictor.pkl') year_model = joblib.load('year_predictor.pkl') # Prepare input data for prediction def prepare_input(data_dict): # Prepare a DataFrame from a dictionary of input data input_df = pd.DataFrame([data_dict]) input_df['Car_Age'] = 2024 - input_df['Year'] input_df.drop(columns=['Year'], inplace=True) return input_df # Make prediction def predict(input_data): # Predict mileage and price for a given input. prepared_data = prepare_input(input_data) mileage = mileage_model.predict(prepared_data)[0] price = price_model.predict(prepared_data)[0] year = year_model.predict(prepared_data)[0] return mileage, price, int(year) # Sample data for prediction data = { 'Year': 2022, 'Kilometers_Driven': 30000, 'Fuel_Type': 'Petrol', 'Transmission': 'Manual', 'Owner_Type': 'First', 'Location': 'Mumbai', 'Engine CC': 1200, 'Power': 85, 'Seats': 5 } # Make prediction predicted_mileage, predicted_price, predicted_year = predict(data) print(f"Predicted Mileage (Km/L): {predicted_mileage:.2f}") print(f"Predicted Price: ₹{predicted_price:,.2f} Lakhs") print(f"Predicted Year: {predicted_year}")